secured by twists of copper wire. In other cases (see Table I and Figure 2), the aliquots were individually subjected to an additional freeze-thaw cycle before the tubes were fused shut under an atmosphere of nitrogen. The sealed tubes were then placed in an 80° bath for known periods of time. Upon removal from the 80° bath, the tubes were stored at -78° . Infrared spectra over the region 2100-1800 cm⁻¹ were recorded for all of the samples of a given run at the same time.

For reasons set forth in the discussion, the kinetic data collected cannot be said to be of high quality. However, plots of $\ln (A - A_{\infty}) vs$, time were approximately linear for 2-3 half-lives. (In all cases, the 1855-cm⁻¹ band of Ni₂(CO)₂(C₅H₅)₂ was used to monitor the extent of substrate consumption. It should be noted that diphenylacetylene absorbs weakly at this frequency so that A_{∞} was not zero for the kinetic runs reported here.)

The reported pseudo-first-order rate constants and the fit to eq 9 were obtained from standard least-squares analyses.

Acknowledgment.—Support of this research by the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Contribution from the Chemistry Department, Northwestern University, Evanston, Illinois

Stereochemistry of the Mercury-Catalyzed Aquation of cis-[Ru(en)₂Cl₂]⁺

By L. A. P. KANE-MAGUIRE¹

Received February 9, 1972

There has been considerable interest recently in the mechanism of the Hg²⁺-catalyzed aquation reactions of chloro(amine)cobalt(III) complexes. Posey and Taube² have shown these reactions to be SN1(lim) in character, while stereochemical studies3-5 have indicated that they generally involve intermediates different in geometry from those encountered in the uncatalyzed aquations. Thus, the Hg^{2+} -induced aquation of $D-[Co(en)_2Cl_2]^+$ yielded a mixture of 70% D-[Co- $(en)_2(H_2O)Cl]^{2+}$ and 30% trans- $[Co(en)_2(H_2O)Cl]^{2+}$, compared with the complete retention observed in the spontaneous reaction.³ Both square-pyramidal⁵ and trigonal-bipyramidal³ geometries have been inferred for the five-coordinate intermediates. However, except for a kinetic study of the Hg²⁺-catalyzed aquation of $[Rh(NH_3)_5C1]^{2+}$ in mixed solvents,⁶ no studies have been made of the corresponding reactions of the complexes of the second- and third-row transition elements. This paper reports the stereochemical results of the Hg^{2+} -catalyzed aquation of $cis-[Ru(en)_2Cl_2]^+$ and compares these with previous data7 for the spontaneous aquation.

Experimental Section

$$\label{eq:materials} \begin{split} \textbf{Materials.} {-\!\!\!-} \mathcal{c} \textit{is-} [Ru(en)_2 Cl_2] Cl \cdot H_2 O \ \text{and} \ D(-) {-} [Ru(en)_2 Cl_2] I \end{split}$$

were prepared by published methods.⁸ All other reagents were analytical grade.

Geometrical Retention Experiment.—Fresh solutions of *cis*-[Ru(en)₂Cl₂]Cl·H₂O and Hg(NO₃)₂ in 0.2 M H₂SO₄ were mixed to give the final concentrations [Ru³⁺] = 7.5 × 10⁻⁴ M and [Hg²⁺] = 1.5 × 10⁻³ M. The uv-vis spectrum of the solution was measured periodically on a Cary 14 spectrophotometer. After 30 min, concentrated HCl was added to give a final [HCl] = 2.5 M. The uv-vis spectrum was then recorded periodically for 24 hr to observe the regeneration of [Ru(en)₂Cl₂]⁺.

Optical Retention Experiment.—The ord spectrum of D(-)-[Ru(en)₂Cl₂] I (8.2 × 10⁻⁴ M) in 0.2 M H₂SO₄ was recorded using a Cary ORD/CD instrument. A fresh solution of Hg(NO₈)₂ in 0.2 M H₂SO₄ was added to give the final concentration [Ru³⁺] = 6.6 × 10⁻⁴ M and [Hg²⁺] = 1.3 × 10⁻³ M. After 30 min concentrated HCl was added (2 M) and the ord spectrum was recorded after a further 4 hr (Table I).

TABLE I

COMPARISON OF THEORETICAL AND REGENERATED SPECIFIC ROTATIONS AT ROTATIONAL MAXIMA

Wavelength, nm	[α] of pure $\mathfrak{D}(-)$ -[Ru(en) ₂ Cl ₂] ⁺	[α] regenerated by addition of HCl to aquated soln
368	-1590 ± 50	-1640 ± 50
333	+250	+150
307	+1350	+1280
280	-1620	-1530

Results and Discussion

Addition of Hg^{2+} to an acidic solution of cis-[Ru-(en)₂Cl₂]⁺ caused the uv-vis spectrum to change rapidly over 10 min to that of cis-[Ru(en)₂(H₂O)Cl]²⁺ (ϵ_{329} 1650). This peak at 329 nm then slowly decreased, probably due to conversion to cis-[Ru(en)₂(H₂O)₂]³⁺. The addition of excess HCl at this stage regenerated the calculated uv-vis spectrum of cis-[Ru(en)₂Cl₂]⁺ within 24 hr. No evidence was found for the presence of the trans isomer.

The rapid production of cis-[Ru(en)₂(H₂O)Cl]²⁺ via the Hg²⁺-induced aquation of cis-[Ru(en)₂Cl₂]⁺ was also evident from the ord studies. Thus, the ord spectrum had changed after 15 min to a curve with rotational maxima at 340, 303, and 260 nm ([α] = -550, +670, -970, respectively). The optical retention experiment (Table I) therefore shows that, within experimental error, the reaction sequence

$$cis-[\operatorname{Ru}(\operatorname{en})_2\operatorname{Cl}_2]^+ + \operatorname{Hg}^{2+} + \operatorname{H_2O} \xrightarrow{} [\operatorname{Ru}(\operatorname{en})_2(\operatorname{H_2O})\operatorname{Cl}]^{2+} + \operatorname{Hg}\operatorname{Cl}^+$$

$$[\operatorname{Ru}(\operatorname{en})_2(\operatorname{H}_2\operatorname{O})\operatorname{Cl}]^{2+} + \operatorname{HCl} \longrightarrow [\operatorname{Ru}(\operatorname{en})_2\operatorname{Cl}_2]^+$$

occurs with overall retention of geometric and optical configuration. This is most readily interpreted in terms of complete retention in each step.

A previous study⁷ has shown that the spontaneous aquation of cis-[Ru(en)₂Cl₂]⁺ also occurs with retention of geometric and optical configuration. The similar stereochemical course of the aquation in the presence and absence of Hg²⁺ is further confirmed by the observation of the same isosbestic points (341 and 317 nm) in both cases. However, identical mechanisms are unlikely since the earlier kinetic studies⁷ suggest an SN2 mechanism for the spontaneous aquation of cis-[Ru(en)₂Cl₂]⁺. This seems very improbable in the presence of Hg²⁺, and the retention of configuration observed here is best explained in terms of an SN1 mechanism involving a square-pyramidal intermediate. It is inconsistent with a trigonal-bipyramidal interme-

⁽¹⁾ Address correspondence to the Chemistry Department, University College, Cardiff, Wales, U. K.

⁽²⁾ F. A. Posey and H. Taube, J. Amer. Chem. Soc., 79, 255 (1957).
(3) A. M. Sargeson, Aust. J. Chem., 17, 385 (1964).

 ⁽⁴⁾ D. A. Loeliger and H. Taube, *Inorg. Chem.*, 5, 1376 (1966).

⁽⁵⁾ D. A. Buckingham, I. I. Olsen, and A. M. Sargeson, Aust. J. Chem., 20, 597 (1967).

⁽⁶⁾ J. Burgess and M. G. Price, J. Chem. Soc. A, 3108 (1971).

⁽⁷⁾ J. A. Broomhead and L. A. P. Kane-Maguire, Inorg. Chem., 7, 2519 (1968).

⁽⁸⁾ J. A. Broomhead and L. A. P. Kane-Maguire, J. Chem. Soc. A, 546 (1967).

diate, which would be expected to lead to rearrangement. It is interesting that this proposal of a squarepyramidal geometry for the intermediate $[Ru(en)_2Cl]^{2+}$ is in accord with Pearson's theoretical prediction⁹ that this is the most stable geometry for a five-coordinate low-spin d⁵ complex.

Acknowledgments.—I thank Dr. R. G. Pearson for helpful discussions.

(9) R. G. Pearson, J. Amer. Chem. Soc., 91, 4947 (1969).

Contribution from Bell Laboratories, Murray Hill, New Jersey 07974

Association of Group V Pentafluorides in the Gas Phase

By M. J. VASILE AND W. E. FALCONER*

Received February 16, 1972

In a recent mass spectrometric study, Lawless¹ reported evidence for dimers of SbF₅ and BiF₅ in the gas phase but found no evidence for $(BiF_5)_n$, n = 3 or 4, nor presumably for $(SbF_5)_n$, n > 2. From these observations Lawless suggested that the dimers have a double fluorine bridge structure and that the preferred interpretation² of the ¹⁹F nmr spectrum of liquid SbF₅ should be in terms of dimeric units. Müller, *et al.*,³ have also shown that the mass spectrum of gaseous SbF₅ contains small amounts of dimeric ions. However, a number of recent studies suggest higher concentrations of SbF₅ dimer than were found in either of these mass spectrometric studies;⁴⁻⁷ some also find evidence for higher agglomerates.^{5,7}

The concentration of associated species will be greatest in the saturated vapor which is in equilibrium with either the solid or liquid phase. In the work of Lawless,¹ this condition will be more nearly approached for BiF₅ than for SbF₅. Using a molecular beam source mass spectrometer,⁷ we were able to find substantially more dimer in SbF₅ vapor than either Lawless¹ or Müller, *et al.*,³ as well as higher agglomerates up to the pentamer. Therefore we have studied the saturated vapors of PF₅, AsF₅, and BiF₅ to gain insight into the vapor-phase structure of the group V pentafluorides.

The molecular beam sources and collimating orifices were fabricated from Monel and heavily prefluorinated. Effusion took place from either a 0.025- or a 0.038-cm diameter orifice. The temperature of the gas inlet was maintained by melting slush baths, and the solid sources were heated with resistive windings. Source temperatures were monitored continuously with ther-

(1) E. W. Lawless, Inorg. Chem., 10, 2084 (1971).

(2) E. L. Muetterties and W. D. Phillips, Advan. Inorg. Chem. Radiochem., 4, 231 (1962).

(3) A. Müller, H. W. Roesky, and D. Böhler, Z. Chem., 7, 469 (1967).

(4) L. E. Alexander, Inorg. Nucl. Chem. Lett., 7, 1053 (1971).

(5) J. H. Holloway, private communication, 1971. Chain lengths for $(SbF_5)_n$ of 5 or more units are inferred from pressure-volume measurements.

(6) L. E. Alexander and I. R. Beattie, unpublished Raman spectroscopic

results taken at 2 Torr pressure over a cell temperature range of 20 to 140°.
(7) M. J. Vasile, G. R. Jones, and W. E. Falconer, *Chem. Commun.*, 1355 (1971).

mocouples. The mass spectrometer was a modified EAI quadrupole with an Extranuclear Laboratories power supply. The electron energy in the ion source was 70 eV. The molecular beam, electron beam, and resultant ions were on mutually perpendicular axes.

 PF_5 was obtained from Matheson, AsF_5 and BiF_5 were supplied by Ozark-Mahoning, and SbF_5 was from Allied Chemicals. All were used without further purification. PF_5 and AsF_5 were handled on a Monel vacuum line; BiF_5 was loaded into the solid effusion source in a dry, oxygen-free helium atmosphere (O₂ + H₂O concentration below 1 part in 10⁶).

 PF_5 vapor was sampled effusively from a gas-solid equilibrium at $162^{\circ}K$; AsF_5 was similarly studied at $191^{\circ}K$. In neither case could any association be detected, which means an upper limit of dimeric ions of less than 1 part in 10^4 .

For BiF₅ a satisfactory molecular beam was obtained between 341 and 361°K, corresponding to vapor pressures between 1.2 and 2.1 Torr. The fragmentation pattern for BiF₅ at an effusion source temperature of 360°K obtained in this study and that due to Lawless are given in Table I. Similar data, for SbF₅, including a comparison with the work of Müller, *et al.*, are given in Table II. The data obtained in this study for SbF₅ were for an effusion source at room temperature ($\sim 298^{\circ}$ K, vapor pressure of SbF₅ $\cong 2$ Torr). Abundances of associated ions were independent of the effu-

Table I Relative Intensities of Fragment Ions from ${\rm BiF}_6$

		——————————————————————————————————————		
Mass	Ion	Ref 1	This work ^a	
209	Bi^+	13	24	
228	BiF+	10	26	
247	${ m BiF_2^+}$	38	62	
266	${ m BiF_3^+}$	10	2	
285	BiF₄+	100	100	
418	Bi_2 ⁺	0.3	0.3	
437	${ m Bi_2F^+}$	0.3	0.3	
456	$\mathrm{Bi_2F_2}^+$	0.2	0.2	
475	$\mathrm{Bi_2F_8}^+$	0.5	0.1	
494	$\operatorname{Bi_2F_4^+}$	0.3	0.2	
513	${ m Bi_2F_{\delta}}^+$	3.4	4.0	
551	$\mathrm{Bi}_{2}\mathrm{F}_{7}$ +	3.5	2.6	
589	${\operatorname{Bi}}_2{\operatorname{F}}_9{}^+$	18.0	13.5	
857	${ m Bi_{3}F_{12}}^+$	ND^{b}	0.05	
895	${ m Bi_{3}F_{14}}^{+}$	ND	0.07	

^a Not corrected for transmission. Oven temperature 360°K. ^b ND, not detected.

Table II Relative Intensities of Fragment Ions from ${\rm SbF}_5$

			Rel intensity		
Mass	Ion	Ref 3^a	Ref 1 ^b	This work ^c	
121	Sb+	10.8	8.0	4	
140	SbF+	10.0	7.0	23	
159	SbF_2^+	18.8	25	47	
178	SbF_3 +	10.8	20	26	
197	SbF_4^+	100	100	100	
216	SbF_{5}^{+}	0.72	NR^d	ND^{e}	
413	$\mathrm{Sb_2F_9^+}$	0.24	0.2	8.9	
415	Sb_2F_9 +	0.40	NR	13.7	
417	$\mathrm{Sb}_{2}\mathrm{F}_{9}^{+}$	0.13	NR	4.7	
629	$Sb_{3}F_{14}$ +	NR	ND	0.06	
631	$Sb_{3}F_{14}$ +	NR	ND	0.10	
633	$Sb_{3}F_{14}$ +	NR	ND	0.07	
635	$Sb_{3}F_{14}$ +	NR	ND	0.02	

^a Conventional inlet and ion source (source temperature not quoted). ^b Conventional inlet, temperature 363–383°K. ^c Beam inlet at room temperature—not corrected for transmission. ^d NR, not reported. ^e ND, not detected.